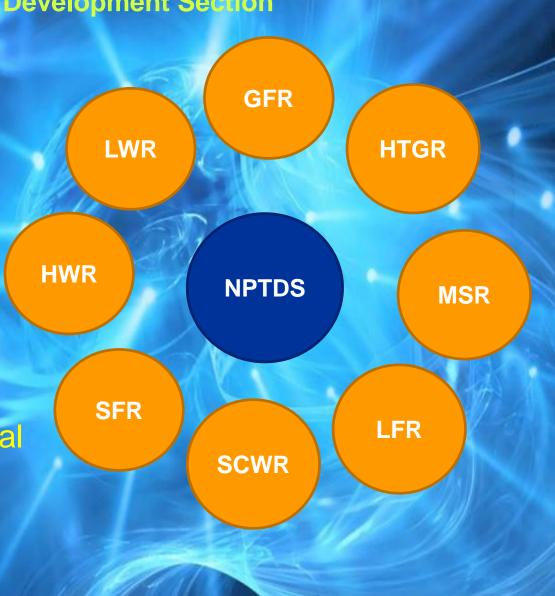


IAEA Activities on HTGR Technology Development


Frederik Reitsma

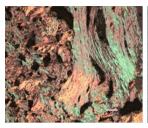
Team Leader (SMR Technology Development)
Nuclear Power Technology Development Section
Division of Nuclear Power, Department of Nuclear Energy

NPTDS

Nuclear Power Technology Development Section

- Department of Energy
- Division Nuclear Power
- NPTDS currently works on all advanced and innovative reactor technologies
- Provides support to member states on all issues related to technology
- Has a number of technical working group driving its work in order to implement the GC resolution

Programme Activities: TWGs, Conferences, CRPs, International Experts Meetings, TMs



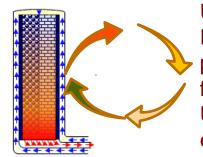
HTGRs – Coordinated Research Projects

Completed 2014 CRP on Improving the **Understanding of Irradiation-Creep** Behaviour in Nuclear Graphite: 2x TECDOCS under preparation

- Part 1: Models and Mechanisms
- Part 2: Recent Developments

Development of Approaches, Methodologies and Criteria for Determining the Technical Basis for Emergency Planning Zone for Small Modular Reactor Deployment (2018-2021)

NEW CRP proposed:


Technologies to enhance the competitiveness and early deployment of SMRs and HTRs (2020 - 2024)

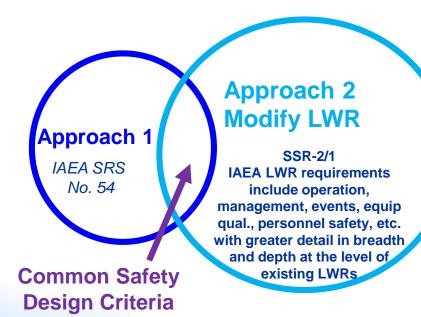
To determine the uncertainty in HTGR calculations at all stages of coupled reactor physics, thermal-hydraulics and depletion calculations - Completed 2019

CRP on HTGR Uncertainty in Analysis

HTGRs applications for energy neutral sustainable comprehensive extraction and mineral products development -completed 2019

Use process heat Extract U/Th with products i.e. cleaner fertilizer U / Th content and extraction studies

CRP I1026 on Modular High Temperature Gas cooled Reactor Safety Design – 2014 - 2018


- Investigate modular HTGR safety design criteria to assure that an acceptably broad spectrum of design and beyond design basis events are addressed in the international design and development community
- Approach 1 limits scope to qualitative, functional statements of how top requirements are to be met for only SSCs that are safety-related for public safety with examples from conceptual design of MHTGR (steam cycle for electricity) / Risk informed approach
- Approach 2 study the IAEA SSR-2/1 SDC for applicability / interpretation for modular HTGRs

10 participating organizations from 9 member states: China, Germany, Indonesia, Kazakhstan, Korea (Republic of), Japan, UK, Ukraine, USA

- 4th RCM 11 14 June 2018
- CM 17-20 June 2019

Planned outcomes:

- NE series report: Modular High Temperature Gas-cooled Reactor Safety Design Criteria
- TECDOC: Modular High Temperature Gascooled Reactor Safety Design Methodology and Implementation Examples

CRP I1026 on Modular High Temperature Gas cooled Reactor Safety Design – 2014 - 2018

Investigate modular HTGR safety design criteria to assure the broad spectrum of design and beyond design basis events international design and development community

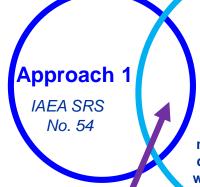
Approach 1 limits scope to qualitative, functional sta are to be met for only SSCs that are safety-related from conceptual design of MHTGR (steam cy/ approach

Approach 2 study the IAEA SSR-2/1 SF **HTGRs**

> 10 participating organization states: China, Germany Korea (Republic of)

- 4th RCM 11
- CM 17-20

Planned.


• NE dular High Temperature or Safety Design Criteria dular High Temperature Gas-Cactor Safety Design Methodology

plementation Examples

top requirements **xy** with examples **Risk informed**

in the

ty / interpretation for modular

akhstan.

me, USA

Common Safety Design Criteria

Approach 2 **Modify LWR**

SSR-2/1 **IAEA LWR requirements** include operation, management, events, equip qual., personnel safety, etc. with greater detail in breadth and depth at the level of existing LWRs

Technical Meetings (TMs) - 2019

TM on the IAEA Nuclear Graphite Knowledge Base, 7-8 Nov

- TM of the Technical Working Group on Gas Cooled Reactors,
 11-13 Nov
- TM on Technologies to Enhance the Competitiveness and Early Deployment of SMRs and HTGRs, 14-15 Nov
- Joint IAEA—GIF TM on the Safety of High Temperature Gas
 Cooled Reactors, 9-12 December

Joint ICTP-IAEA Workshop Course Joint ICTP-IAEA Workshop on Physics and Technology of Innovative High Temperature Nuclear Energy Systems (SMR 3281) 14 – 18 October 2019, Trieste, Italy

Research ~

Scientific Calendar

Programmes -

Europe/Rome

Administration

Search Search in Conferences: Overview

Programme

Practical info

Joint ICTP-IAEA Workshop on Physics and Technology of Innovative High Temperature Nuclear Energy Systems | (smr 3281)

Speakers
Starts 14 Oct 2019
Ends 18 Oct 2019
Central European Time

Organizers

Ibrahim Khamis (IAEA), Frederik Reitsma (IAEA), Local Organiser: Nicola Seriani

HTGR: Outputs

Publications

- TECDOC on Improving the Understanding of Irradiation-Creep Behaviour in Nuclear Graphite: Part 1: Models and Mechanisms
- TECDOC on Role of Nuclear-Grade Graphite in Controlling Oxidation in Modular High Temperature Gas-Cooled Reactors
- TECDOC for each of the CRPs completed
- Development of E-Learning material for HTGRs, based on previous training courses, including materials on SMRs

Other Outputs

- Further enhancement of Knowledge Platform on SharePoint, Taxonomy developed for the Portal as well as IAEA Nuclear Graphite Knowledge Base
- Prepare to receive the transfer of the Knowledge base and software related to the closed HTGRs program of the Research Centre Juelich to the IAEA
- Define and support the preparation of the PC-based basic training simulator for modular HTGRs (to be donated by INET, Tsinghua University)

A new Toolkit to help embarking countries in applying the IAEA methodology on Reactor Technology Assessment → also for SMR

Status and Embarking Countries interested in HTGRs

Countries	Recent Milestone					
Saudi Arabia	 Vision 2030 → National Transformation Program 2020: Saudi National Atomic Energy Project: An MOU between K.A.CARE and CNNC on HTGR development/deployment in KSA 					
Indonesia	 Through an open-bidding, an experimental 10 MW(th) HTR-type SMR was selected in March 2015 for a basic design work aiming for a deployment in mid 2020s Site: R&D Complex in Serpong where a 30 MW(th) research reactor in operation BAPETEN, the regulatory body has issued a site license 					
Jordan	 Several SMR designs considered and feasibility studies are being conducted (two HTGRs designs under consideration) 					
Poland	 HTGR for process heat application to be explored in parallel to large LWRs for process heat only (dependent on industry interest) 10 MW(th) experimental HTGR at NCBJ proposed possibly with EU cooperation 					

Newcomer countries want to employ Nth of a kind...

Demonstration SMR / HTGR plants are needed!

IAEA SMR Booklet 2018 Edition

Main Features

- Design description and main features of 56 SMR designs
- SMRs are categorized in six (06) types based on coolant type/neutron spectrum:
 - Land Based WCRs
 - Marine Based WCRs
 - > HTGRs (10 designs from 5 MS)
 - Fast Reactors
 - MSRs
 - Others
- MANY designs not included / not submitted
- Detailed information in the ARIS database
- Next edition... August 2020

Status of SMR pre-licensing in Canada

Vendor	Name / cooling type	(MWe)	Applied for	Review start date	Status
	IMSR Integral Molten Salt Reactor	200	Phase 1	April 2016	Phase 1 complete
Terrestrial Energy Inc.			Phase 2	December 2018	Phase 2 assessment in progress
NuScale Power, LLC	NuScale Integral Pressurized Water Reactor	50	Phase 2*	April 1, 2019	Service agreement signed. Assessment pending
Ultra Safe Nuclear	MMR-5 and MMR-10 High Temperature Gas	5-10	Phase 1	December 2016	Phase 1 complete
Corporation / Global First Power			Phase 2	Pending	PHASE 2 Service Agreement in place – Project start pending
Westinghouse Electric Company, LLC	eVinci Micro Reactor Solid core and heat pipes	up to 25 MWe	Phase 2*	Pending early 2019	Service agreement under development
LeadCold Nuclear Inc.	SEALER Molten Lead	3	Phase 1	January 2017	Phase 1 on hold at vendor's request
Advanced Reactor Concepts Ltd.	ARC-100 Liquid Sodium	100	Phase 1	Fall 2017	Assessment in progress
URENCO	U-Battery High-Temperature Gas	4	Phase 1	To be determined	Service agreement under development
Moltex Energy	Moltex Energy Stable Salt Reactor Molten Salt	300	Series Phase 1 and 2	December 2017	Phase 1 assessment in progress
SMR, LLC. (A Holtec International Company)	SMR-160 Pressurized Light Water	160	Phase 1	July 2018	Assessment in progress
StarCore Nuclear	StarCore Module High-Temperature Gas	10	Series Phase 1 and 2	To be determined	Service agreement under development

For inquiries on SMR, please contact:

Mr Frederik Reitsma
Team Leader: SMR Technology Development

IAEA Nuclear Power Technology Development Section

F.Reitsma@iaea.org

Thank you!